
N92-22079

IDEAL PHOTON NUMBER AMPLIFIER AND DUPLICATOR
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ABSTRACT: The photon number-amplification and number-duplication mechanisms are

analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-

deamplification mechanism, the symmetry between amplification and deamplification being

broken by the integer-valued nature of the number operator. Both transformations--

amplification and duplication--need an auxiliary field which, in the case of amplification,

turns out to be amplified in the inverse way. Input-output energy conservation is accounted

for using a classical pump or through frequency-conversion of the fields. Ignoring one of the

fields is equivalent to consider the amplifier as an open system involving entropy production.

The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

1. INTRODUCTION

Squeezing and amplification are two intimately related concepts. A scaling of the quantum

fluctuations (A02) _ G2<A02), independently on the state of the field, corresponds to the

amplification of the fluctuating observable 0 _ GO. Such kind of ideal quantum amplification

rescales all the moments of 0 sinmltaneously, leaving the signal-to-noise ratio (SNR) unchanged

when detecting O.

Ideal quantum amplifiers are key-devices in quantum optical applications, where, depending on

the particular circumstances, one would possibly change the levels of both signal and fluctuations

without degrading the SNR. For example, in local-area network (LAN) communications, strongly

subpoissonian fields with limited average number of photons are needed to exploit the ultimate

channel capacity of the field (which is constrained in the total power and the bandwidth). On

the other hand, a large signal is preferred just before the detection stage, in order to minimize all

the subsequent sources of disturbance. In both cases an ideal photon number-amplifier (O -= fi)

would allow to change signal and fluctuations as desired, leading to significant improvements of

the network performance.

Another point whicil should be considered in any quantum amplification process is the role

played by the Heisenberg principle in defining the ideal behaviour of the amplifier. In fact, the

amplification of the observable O affects the statistics of the observables which do not commute

with O. For a couple of conjugated variables (0_,02), analogous to the momentum and the
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position of a particle, the quantum fluctuations are constrained by the uncertainty relation

1 [O1,02])= (1)

according to which, when the 01 fluctuations are rescaled as (Ad)_) --, G_(AO_), the

corresponding 02 fluctuations become G-2(AO_) or larger. An ideal d)a amplifier, namely

an amplifier performing at best, should preserve the minimum uncertainty product and, as a

consequence, it should simultaneously attain the two opposite amplifications

o, GO,, --, c-'O . (2)

Depending on the conjugated pair (01,02) one has different kind of amplifiers and related different

kind of squeezing. For example, when the conjugated variables are two quadrature of a field

mode (_1, fiz)--5_ + iSz = a being the annihilation operator--the rescaling (2) defines the phase

sensitive linear amplifier (PSA). The ideal PSA (essentially a parametric amplifier) preserves the

SNR= (hl)/_ and produces the squeezing in a quadrature of the field. In thishomodyne

case the transformation (2) is realized by the Yuen's I unitary evolution (}taU = #a + uaJ', with

/t -- (G + G-a)/2 and u = (G - G-_)/2, lJ representing the usual squeezing operator.

The photon number-amplifier (PNA) is another example of ideal amplifier, which would

transform ideally h into Gh, preserving the direct detection SNR and the number-phase

uncertainty product. The corresponding kind of squeezing is the number-phase squeezing 2 (or

amplitude squeezing), in which the quantum noise is shared between the number fi and the

phase q'. This kind of amplifier is a relatively new concept and is probably not simple to realize

concretely: it has been proposed by Yuen 3-s, who also suggested physically viable approximate

schemes based on resonance fluorescence. PNA's would be particularly useful in direct-detection

receiver and transceiver in a LAN environment, where, as already mentioned, number states are

preferred to coherent or squeezed states, in order to achieve the ultimate channel capacity of the

field. Furthermore, a PNA (but also a PSA) can be used to realize a lossless optical tap, which,

in a LAN would enable a very large number of users to obtain the same performance as the first

user. 6

In this paper the number-phase amplification mechanism is analyzed in detail, in order to

find physical schemes for an ideal PNA. It is shown that, due to the peculiar role of the two

conjugated variables (h, _) in the rock representation, the requirement of a unitary transformation

leads to consider a second field in addition to the amplified one, the two fields being inversely

amplified by the transformation. Input-output energy conservation can be accounted for either

by adding a suited classical pump or by locking the frequencies of the two fields, attaining

simultaneously number-amplification and frequency-conversion. The obvious constraint of integer

gain G (preserving the integer-valued nature of fi) must be relaxed, to consider the deamplification

case: as a consequence, the abstract amplifying transformation In) _ [G'n) is replaced by

In) _ }[Gn] + no), [x] denoting the integer part of x, and n0 being a constant as a function

of n and depending on the input state of the other field. The general SchrSdinger evolution of
the two fields is

m>= I[C,q + a (C;-',.), [C;-'ml + c-' (an) >, (3)

312



(x) = x - [x] denoting the fractional part of z and the gain G being restricted to be either

integer or the inverse of an integer. Eq.(3) can be attained by means of a unitary transformation

involving a classical pump operating at the frequency Ft = G-awa - ws, w_ and wb being the

frequencies of the G-amplified and G-deamplified fields respectively. In the case of simultaneous

amplification/frequency-conversion one has the resonance condition wb = G-lw,,, and the two

fields are intertwined in (3) in order to preserve the total input energy E = (n + G-Xm)wa.

In Sect.2 1 derive the trallsformation (3) and the related Hamiltonian. Apart from the eventual

classical pump, the ideal PNA in the present framework is a four-port nonlinear device (see Fig.l).

However, it can be regarded as a two port device by fixing one input port state (for example,

i ]
m/i/

(pump

PNA

/
I;

Figure 1: Scheme of the ideal PNA.

using the vacuum) or by totally ignoring one field. In the last case the PNA should be regarded as

an open quantum system which changes the entropy of the input state of the field: the particular

case of coherent inputs will be examined in this respect.

In Sect.3 another device analogous to the PNA is analyzed, namely the ideal photon number-

duplicator (PND). Instead of amplifying the number of photons, the ideal PND produces two

copies of the same input state for eigenstates of the number operator. Such a device would be

extremely useful in LAN applications, because it provides a convenient realization of the quantum

nondemolition measurement of the photon number, beside itself realizing lossless optical taps

superior to the amplifier tap s (both applications make possible sharing of information in a LAN).

Arguments related to unitarity--similar to those used for the ideal PNA--lead to the need of a

third auxiliary field, whereas input-output energy conservation can be taken into account either

by means of a classical pump or through frequency-conversion, in a way completely analogous to

the case of the ideal PNA.

In the last section I make some preliminary comparisons between the Hamiltonians of the

ideal devices and those of realistic systems, focusing attention on the gain-2 amplifier, in some

respects very similar to the duplicating device.

2. IDEAL PHOTON NUMBER-AMPLIFIER

2.1 The unitary transformation

In the Heisenberg picture the ideal PNA corresponds to a multiplication of the number operator

fi by the amplification factor G

---, Gfi. (4)
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The requirement of an ideal--i.e, minimum-uncertainty preserving--behaviour reflects on the

Heisenberg transformations for the phase operator (_, which should be the inverse of (4), namely

For highly excited states (i.e. states approximately orthogonal to the vacuum [0)) and for small

phase uncertainties <A(_ 2) << 1 the following simple definition for the phase can be adopted r

_7+ : e_i_ , (6)

/_+ denoting the shift operators E_ = (ata + 1)-1/2a, E+ = (E_)t (E_[n) = In + 1)). Eq.(6)

shows how the integer-valued nature of fi reflects on the phase operator q': the amplification (5)

can simply be attained for G -1 = r integer, raising the shift operators to the power r, whereas,

for the number operator, preservation of its integer-valued nature requires G itself to be integer.

For noninteger G, the transformation (4) can be substituted with the following

Jail, (7)

which coincides with (4) for integer G. For the moment, I focus attention on the deamplification

case (G -1 = r integer), the integer-G case being naturally contained in the following framework.

Denoting by S_ ) the Heisenberg transformation corresponding to Eqs.(7) and (5), for integer

G -1 =ronehas

= r , (8)

(E+)r now being represented on the Fock space as follows:

(/_+)'ln) = In + r} . (9)

From Eqs.(8) and (9) it turns out that the S_ ) acting on a generic operator 0 has the general
form

r--1 oo

: In>< r + hi, (10)
,X=O n=O

and the phase factors, being totally ineffective in the action (10), will be dropped in the following.

One can check that the Heisenberg transformation (8) attains the number-amplification (7)

S_)(h) = [h/r], (11)

and, formally, S_ ) achieves the phase amplification (5) according to Eq.(6). The transformation

(8) is not unitary and, as a consequence, there is no Hamiltonian producing it. The operators

S_') in the definition of the map (10) satisfy the following relations

r-1

_:_ J _x = 1, (12)
£=0

_)(_'))t =5_,, (13)

_(')_(,) 5(") (14))_ _'t_ = '-'_s+_ "
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Despite the map S_ ) is not unitary, the completeness relation (12) and the orthogonality

conditions (13) allow one to recover a unitary evolution on an enlarged quantum system. I

postpone for the moment the construction of the corresponding unitary evolution and the related

Hamiltonians, to continue the discussion on the properties of the map.

Eq.(14) leads to semigroup composition of the maps S_ )

corresponding to the amplification of PNA's in series. On the other hand, as a consequence of the

completeness and orthogonality relations (12) and (13), S_ ) preserves the operator products and

the adjoint operation, thus transforming consistently the whole operator algebra. When applied

on the particle operator a the transformation S_ ) gives the result

[S_)(a) = _ [n --1) [n_/f_ (n[ = (1 +__lft/rl)fi!]
.=, + r)! J

a" -= a(,) , (16)

and for the creation operator one has $_)(at) = aJ_). Eq.(16) shows that the transformed particle

operator S_)(a) coincides with the r-boson operator a(r) introduced by Brandt and Greenberg: 1°

a(r) and a_,) annihilate and create r photons simultaneously and satisfy the commutation relations

[a(,), a_,)] = 1, [_, a(,)} = -ra(,). The preservation of the operator product implies that the

transformation S_ ) applied to a generic operator 0 = O(a, at) (Hermitian analytic function of a

and at) can simply be obtained substituting a and at with a(,) and aJ,), i.e. S_)(6) = O(a(,), a_,)).

Therefore, S_ ) corresponds to the construction of the r-photon observables of D'Ariano. 1_'12

The completeness and orthogonality relations (12) and (13) are preserved by similarity

transformations

S_')' = 1)'S(_)I)V, (17)

and I)V being unitary operators. A general transformation (17), however, would destroy, the

ideal behaviour of the PNA: the only similarity transformations which preserve the Heisenberg

evolutions (7) and (5) are the permutations of the )_'s

_')' /5_') 5(') (18)
: : _,p(),) ,

where /5 denotes the operator representing a permutation of the A's, namely /5]nr + )_) =

Inr + P(,X)).

I return now to the construction of the unitary evolution corresponding to S_ ). From the

definition (10) and the completeness relation (12) it follows that S_ ) is a completely positive map

(shortly CP map): s'9 this is physically relevant, because the subdynamics of the open systems

are CP maps, the set of CP maps being closed under partial trace. Here I recall that a unit-

preserving CP map has the general form T(O) = _ 1)2617o, where _o VJ 17,, = 1. The space

of the unit-preserving CP maps is closed under: i) convex combination _ipiTi; ii) composition

TAT2; iii) tensor product Ta ® T2; iv) partial trace: namely, if 7" is CP on _'1 ® .T'2 and /2 is a
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density operator on _2, then _(0) = Trz[pT(0 ® i)] is CP on .T'I. The last point means that

if we have a unitary evolution in a closed system and if subdynamics on a (open) subsystem can
be defined--i.e, partial trace on the subsystem degrees of freedom--then these subdynamics are
CP maps. However, the converse is not true in general (namely not every CP map corresponds
to a unitary evolution on an enlarged system) and the additional orthogonality constraints (13)

are essential in guaranteeing also the converse assertion.

The unitary evolution corresponding to S_ ) can be constructed by using two different photon

fields in the amplification process and considering the following operator U(,) acting on the Fock

space of the composite system Y ® .T"

r-1

0(,) = Z ® (19)
)_=0

where/_(_') are similar to _¢[')in the sense of Eq.(17). _r(,)-unitarity follows from Eqs.(12), (13)

and (17). The subdynamics of the first photon field correspond to S_):

/U:_)01U(,)) = Tr [(_51 ® p2)U_)(O1 ® i)(?(r)] = Trl [t518_)(01)] (20)

where the uncorrelated pair of states (tS1 ® P2) has been considered as the input of the amplifier.

Tile semigroup property (14) reflects on the composition law for the operators 9(.)

^ ^

g(r)U(,) "_P (f(rs) , (21)

the symbol _p denoting similarity under permutations (18).

Among all operators _r(_) the case of/)(_') = S_r) is particularly interesting, because the second

field undergoes the transposed transformation of S_ )

r-1

A-"=O

One should notice, however, that (br(_)02/)-(,)) depends on the frst input state Pa in general. In

fact, the action of the operator U(,) in Eq.(22) on a number eigenstate is

(23)

and the second field undergoes an exact number-amplification only if the first field is in a r-

photon state, (namely it contains only number of photons multiple of r), in particular if it is in

the vacuum state. Eq.(23) can be rewritten in the following more symmetrical form

(24)

which coincides with Eq.(23) for G -_ = r integer, whereas, for G integer, corresponds to (23) but

with the roles of the two fields interchanged, as a consequence of the identity U?c) = [)(-d) = U(a-')

(notice that Eq.(24) leads to integer valued number of photons only if either G or G -_ is integer).

2.2 The Harniltonian
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I consider the operator b-(a-,) in Eq.(23) only for the case G -1 = r integer, the integer-G case

U(a) corresponding to the inverse operator U]a-,)" I denote by at and bt the particle operators

of the two fields, namely

In,m)- (at)'_ (bf)m 10,0). (25)

Comparing the transformation (24) with the action of the multiboson operator of Eq. (16)

a_)ln ) = ¢[n/r] + 1In + r), (26)

one can see that the ideal amplification (23) can be attained by interchanging at with b_) and

then permuting at with bt modes. The operator permuting at and bt (apart from a sign) has the

form

a,ld, as a consequeuce, the operator (/-(r) is given by

The representation (23) of the operator U(r) in Eq. (28) can directly be checked using Eqs.(25)

and (26). From Eq.(28) one can see that, apart from a permutation of the form (27) (which could

be attained by means of beam splitters), the ideal PNA is described by an interaction Hamiltonian

in the Dirac picture

f-I_ ---ik(a_)b-bta(,)) , (29)

aud an interaction length L given by

71"

kn = 2' (30)

k being the interaction coupling per unit length. Using Eq.(16) the Hamiltonian (29) can be

rewritten in terms of the a and b particle operators

= -ilc((at)'f(.)(ata)b- btf(.)(ata)a'_ ,/:/F
\ I

1 ÷ [atalv ]

[(ata +l)ii__ata + r)]

1/2

(31)

Regarding the energy conservation during the amplification process, one can now thinks to

the four-port device as a globally inelastic process in the time domain (Dirac picture), with the

free Hamiltonian

(32)_Io = w_ata + wbbtb .
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The interaction Hamiltonian/2/F has the form (29) when in the Schrgdingerpicture reads

[t1= -ik (a_,.)be-iat - btai._)e int) (33)

with ft = rcoa -cob. As for the usual parametric frequency-converter the phase factor oscillating at

frequency 9t can be attained by considering an additional classical (i.e. highly excited) pumping

field. On the other hand, also the first permuting operator in (28) requires a classical pmnp (at

frequency f_ = _0a - cob) and it can be attained by means of beam splitters if wa = cob, otherwise

it corresponds to a parametric frequency-converter.

The case cob = rcoa requires no pump at the second step in (28). In this case, the second

operator in (28) can be reviewed as a PNA/frequency-converter (PNAFC) described by the

equations

In) lie-ira] + a -1(a.) >, (co= coo),
(34)

I-,) I[a l + c (co= cob= rcoo),

The PNAFC conserves the total input-output energy E = (n + rm)w_, as it follows from Eq.(34).

On the other hand, for cos = rw_ the first permuting operator in Eq.(28) needs a pump at frequency

f_' = (r - 1)co, and represents now a parametric frequency-converter (FC) intertwining the two

amplified modes. In this fashion the ideal PNA can be viewed as the cascade of an ideal PNAFC

(an energy preserving four-port device) followed by an ideal FC (a four port device with pump).

2.3 The PNA as an open system: the amplification entropy

In practical applications it is useful to consider the ideal PNA as a two-port device, actually

ignoring not only the pumping field, but also one of the two anaplified fields. This description

is equivalent to consider the PNA as an open quantum system, which no longer preserves both

the energy and the entropy of the input field. However, the amplification and the deamplification

cases now become quite different. This follows from the unitary transformation (24) where, despite

the apparent symmetrical roles of the two fields, the state of the amplified one depends on the

state of the other, whereas the deamplified field is always independent on the amplified one. This

stra.nge unilateral dependence is due to the integer-valued nature of h, that breaks the symmetry

between amplification and deamplification. In the following I examine the two cases separately.

The number-amplification--ignoring the deamplified field--corresponds to the partial trace

(02) --_ Tr (/)1 (_ f_2)(}(!)(i @ 02)(]-(r) :" Tr2 /5: _-'_.( .;_ , (35)
3,=0

where

Therefore, the amplification corresponds to the CP map

r--1

,k=O

(36)

(37)
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which, due to the form of operators l)'_(_) in Eq.(36), depends on the state pl of the other field,

(namely on the 'temperature' of the PNA). The case of t_l equal to the vacuum state ('zero

temperature' ) is particularly simple

?o(')= (_o("))t = Z I_><-I, (3s)
n----.O

and corresponds to the exact number-amplification

s(_i')(f(_)) = i(,'_). (39)

In the SchrSdinger picture one has

(40)

Despite the evolution (40) is not unitary (it is only an isometry), it preserves the Newmann-

Shannon entropy

S(_) = -Trt_logt_. (41)

The entropy conservation follows from the orthogonality conditions (13) which imply that

(V0("))tl?0 (") = 1 (but l?0("/(l?0(r))f # 1). Thus, the physical picture of the abstract number-

amplification In) --* Irn) corresponds to an ideal PNA operating with the auxiliary field in the

vacuum (namely a PNA at zero temperature). As long as the number-amplification is attained

exactly, no entropy change of the field occurs.

-8 0 8

I ' I ' I ' I

t,,..

re)

¢,,1

..,,Jilllil,,,,., <>
6 0 40 80 120 160 200

Figure 2: Q-function and number distribution of a coherent state having (fi) = 10 photons after

number-amplification with G = 10. The final moments are (fi) = 100 and (Afi2/_/2 = 31.52.
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In Fig.2 the effect of exact number-amplification on an input coherent state is illustrated in

both the Q-function and number representations. The amplified coherent state

¢'_ Con

rL=0

(42)

has a Poisson distribution of multiples of r photons. In the phase space the exact number-

amplification corresponds to a symmetrical split of the quantum distribution into r identical

replicas having fluctuations enhanced in the number and reduced in the phase (the quantum

distribution becomes longer in the radial direction and narrower in the tangential one).

I now examine the case of number-deamplification. Ignoring the amplified field corresponds

to the partial trace

r--1 /(61) = Tr [(pl _/_2)U_r)((_l (_ 1)U(r)] : Trl Pl Z(S_r))_01S_ ") •
A--o

(43)

The deamplification thus corresponds to the CP map (10)

r-1

= , (44)
A----0

and is totally independent on the state of the amplified field. In the SchriSdinger picture one has

r-1

S(s_)(_) = _ _')_(_('))t , (4,5)
_=0

namely, the number-deamplification corresponds to an isometric evolution which does not preserve

the entropy (41) in general. The entropy change depends only on the gain G -_ = r and on

the input state of the deamplified field (and not on the other field). It is worth noticing that

the entropy during deamplification can either increase or decrease as a function of r. As the

photon number-deamplification leads to the vacuum state for r = G -1 --* 90, the entropy is

asymptotically a decreasing function of r for large r. On the other hand, the evolution (45) would

in general transform a pure state into a mixed one (the only state which are left pure being the

number eigenstates and the r-photon states), and thus leads to an increase of entropy in this case.

Therefore, when a pure state is number-deamplified, the entropy exhibits at least one maximum

as a function of the inverse gain r. In Fig.3 the Newmann-Shannon entropy (41) is plotted as a

function of r, for two different input coherent states. One can see that for small average number

of input photons the entropy has only one maximum, whereas for intense input fields several

maxima appear and local very low minima can occur (corresponding to almost pure states). As

a rule, for coherent inputs the maxima are located approximately at r _ lal2/I--lal 2 being the

average number of input photons and l = 1,2,...--the maxima weakening for increasing l and

the entropy S being always smaller than log 2, which is the entropy of two pure states mixing.

In Fig.4 the Q-function and the number distribution of a strongly deamplified coherent state

are reported, in order to illustrate the number-phase squeezing related to number-deamplification.

In a fashion which is exactly the opposite of that depicted in Fig.2 the number-deamplification

leads to spreading in the phase and narrowing in the number, thus converting highly excited
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Figure 3: Deamplification Newmann-Shannon entropy versus the inverse gain r = G -1 for a

coherent state with (h) = 10 photons (figure on the left) and (5) = 100 photons.

states into nearly Fock states. Asymptotic evaluations 12 for G _ 0, keeping constant the average

number of output photons, leads to (h) ... Gla[ 2 and (Ah2) _ G2[al 2. Therefore, the gain G

corresponds to the Fano factor F = (h>/(Ah 2) of the output distribution, as long as the input

state is excited before amplification in order to keep constant the intensity at the output: in this

way the PNA works as a device converting coherent states in nearly-number eigenstates.

3. IDEAL PHOTON NUMBER-DUPLICATOR

A photon number-duplicator (PND) is a device which, upon acting on a input field in a certain

number eigenstate, produces two output fields both of which are in the same number eigenstate

as the input• Such a device can be realized in principle, whereas a 'cloning' device producing

multiple copies of a (generally not orthogonal) input set of states would violate unitarity. 4'13 For

the ideal PNA the unitary transformation has been obtained starting from the amplifying CP

map defined by the relation

= (E+)". (46)

The case of tile ideal PND can be obtained in strict analogy with Eq.(46) by means of the

duplicating CP map

&(E+) = ® (47)

The general transformation attaining tile duplication of the shift operators (47) has the form

_------O0

(48)
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Figure 4: Q-function and number distribution of a coherent state having (fi) = 5000 photons, after

strong number-deamplification G = .005. The final moments are (h) = 25 and (A52) _/2 = 1.16.

where the nonunitary operators S_ (S_ : 9v ® _" --_ .F) are given by

oo

S:_= _ _m,n+_lmin{n,m}){m,n], (49
rt_rn:0

and satisfy the orthogonality and completeness relations

_ : ,_,,,i, (,50
oo

E: i ®i.

By adding a third photon field we can write a unitary operator (; (_f : 2-® _ ® _" ---+9c ® _ ® 2-)
as follows

_---00 )t = -- O0 rt i ,rt2 ,rn 1 ,tTt 2 _---0

Imin{nx,ma}}<min{n2,m2}l ® In2){nl] ® I"_><m_l. (52)

The operator _f is involutive (i.e. (r 2 = 1) and produces the intertwining

0(E± ® i ® i)(7 = i ® E_ ® E_:,

which corresponds to the Fock representation

(53)

OIZ,m,n) = / Im,Z,Z+ _- m) _ > r_, (54)
Im, l-n+m,l) n<_m.t
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In particular, one has (7]l, n, n) = In, l, l), and for the practically interesting case of the second

and third fields in the vacuum state one obtains

(¢ln,0,0) = (55)

As thewhich is the required duplication. The scheme of the ideal PND is depicted in Fig.(5).

ideal PNA corresponds to intertwining the one-particle operator at with the r-particle operator

b_,), the PND performs a change between the one-mode operator at and the two-mode operator

b_a,ll

b_l,a)=btct(max{btb, ctc}+l) -1,2 , (56)

Itwhich satisfies the comnmtation relations [b(_,l),b_l,1)]* = 1 and [btb + ctc, b(1.1)] = -2b(_,_).

follows that the Hamiltonian in the Dirac picture is

with the same interaction length as in (30). Conservation of energy now requires a classical pump

at frequency ft = wa -¢ob - we, apart from the case of frequency matching _oa = wb +¢oc, which

preserves the input energy E = wal + wbm + w_n. The PND described in the present context is

more precisely a PNDFC (frequency-converter): in order to keep the frequency constant during

the duplication one can choose _ob = ¢0_ and put a parametric frequency-converter acting on the

input field a.

In conclusion of this section I remark that the ideal PND produces the same effect of a gain-2

PNA when the total immber of photons of the two replica outputs is detected. In fact, one has

(58)(,,x)(_lf(bt b + clc)l_}(1,1) = (2)(c_lf(aJ a)lo_)(2) = (_lf(2at a,)l_) ,

oo

Ic_)(2) = _ o_n[2n) (59)
rim0

where

denotes the gain-2 PNA output state and

n=O

(60)

the PND output state corresponding to input

la) = _ a,_ln} , ]a,,12 = 1. (61)
n=O n=0

= < lf(ata)l ), (62)

Moreover, one has
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Figure 5: Scheme of the ideal PND.

and the SNR in detecting btb, efc (or their sum) remains the same as at the input of the PND:

in this sense the PND can be regarded an ideal amplifier.

4. COMPARISON WITH REAL SYSTEMS

Tile Hamiltonians (31) and (57) are quite complicated, due to the presence of an interaction

strength wlfich depends on the input number of photons of one field. For high average number of

photons (ata) >> r the interaction strength in (31) behaves asymptotically as follows

f(_)(ata) (ata) -}(_-_)_-- (63)

Alternatively, one can look directly at the asymptotic behaviour of the multiboson operator a_,):

}1/2
a_) = [ata/fl(,_ - r)! (at) _ =

[ata/rll/_(h- r + 1)-l/2r}_(_,)a t _. _;r('_)at,

where _;,(_) denotes the function of the phase

(64)

Nr(_C :_) = T-}_:-i(r-1) } . (65)

Taking into account also the pumping field, the phase-number a.mplifier would require a medium

with a X(2) susceptibility and an interaction Hamiltonian of the form

I_Iz _ )_(_o)atbc + h.c., (66)

c denoting the annihilator of the pumping field. From Eq.(66) it follows that in order to attain

phase-number amplification one should use a X (2) medium having polarization which depends on

the phase of the field according to (65) only in a limited frequency range. The amplifier gain r is

involved only in the phase factor (65), and the interaction length has to be tuned at the complete

conversion value L = _r/[2AIX_/2], I_ being the average power flux of the (classical undepleted)
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pump, and )_ c_ X (2). For v = 2 one has t¢2(_) = 2-_e -i_ = (2h)-_at. This case is approximated

by the usual degenerate four-wave mixing medium having Hamiltonian

[-Ii _x X(31(a t )2bc + h.c.. (67)

For )_ oc X(31I_/2 this medium attains gain-2 number amplification approximately in the average
values.

The ideal PND is quite similar to the gain-2 ideal PNA, the main difference being that tile field

in the phase-dependent frequency range now splits into the two nondegenerate modes bearing the

replica-states (actually one can analogously define G-'multiplicator' devices, which then compares

to gain-G PNA's). When operating on two vacuua as in Fig.5, one can substitute the function

max{bib, cic} in the Hamiltonian with either bib or cic, without changing the output.

In conclusion, some remarks are in order, regarding the possibility of attaining the amplifying

CP maps (37) and (44) through interaction with atomic--instead of electromagnetic--fields. In

this case the nonunitary operators in Eqs.(37) and (44) should be regarded as partial trace

of the interaction over the atomic degrees of freedom. The relations (12-14) have no faithfld

representation on a finite-dimensional Hilbert space, and one cannot realize them using atoms

with a finite number of levels. However, some similarities can be recognized between this case

and the PNA mechanism. For example, in the high- Q micromaser Fock state generation, the

role of the auxiliary field is played by an inverted two-level atom entering the cavity with a well

defined velocity: 14 the nonunitary reduction of the signal field is obtained by means of nonselective

measurements of the atomic variables. The CP map experimented by the electromagnetic field is

r--I

S(_)(t_) = _ 17(')_(i?_(_)) t , (68)
ot----O

iYj = (alex p (--i/:/Dt) I 1") , (69)

where r = 2, /:/D denotes the usual Jaynes-Cummings Hamiltonian, and I T) represents the

inverted state of the atom. As a matter of fact, the high-Q micromaser works as a 'number-phase

squeezer' (in this fashion the micromaser is a sort of PNA and the successive atomic passages

correspond to gain-2 open PNA's in series). One should notice, however, that the number-phase

squeezing in the micromaser strongly depends on the initial state of the field (which should have

less photons then the asymptotic 'trapping' state), and this feature does not depend on the

particular form of the interaction Hamiltonian /:/D, as long as a finite number of the atomic levels
is concerned.
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